FunGen-xQTL protocol data #
A toy data-set consisting of 49 de-identified samples from ROSMAP project, used to illustrates the computational protocols we developed for the detection and analysis of molecular QTLs (xQTLs).
Contact #
Hao Sun
Location #
The input data and some of the intermediate output data can be download from this Synapse folder. To download the files, a synapse account and synapse clients are both needed. To setup a synapse client, please follow this post.
How the data was prepared #
Source files #
The samples that we use are 49 samples of ROSMAP dataset. The data used in this protocol paper after we processed and de-identified can be found at here
cd /mnt/vast/hpc/csg/xqtl_workflow_testing/finalizing/ROSMAP_data/bam
for i in `cat 50_samples_synapse_id`; do
synapse get $i;
done
The Genotype data are downloaded using:
wget https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/GEUVADIS.chr21.PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz \
https://www.ebi.ac.uk/arrayexpress/files/E-GEUV-1/GEUVADIS.chr22.PH1PH2_465.IMPFRQFILT_BIALLELIC_PH.annotv2.genotypes.vcf.gz
cd ../../
Since we are using the fastq files as starting point of our RNASeq calling pipeline, the phenotype of xqtl protocol data required some preprocessing .
Generating the input phenotype data #
Command 1 take only the chromosome 21 and 22 from each of the bam file in the desinated diretory, then command 2 changes them into fastq file. Doing so keeps our xqtl protocol data into a managable size
sos run pipeline/phenotype_formatting.ipynb bam_subsetting \
--phenoFile `ls ROSMAP_data/RNASeq/*.bam` \
--cwd ROSMAP_data/RNASeq/subsetted \
--container containers/rna_quantification.sif
sos run pipeline/phenotype_formatting.ipynb bam_to_fastq \
--phenoFile `ls ROSMAP_data/RNASeq/subsetted/*.bam` \
--cwd ROSMAP_data/RNASeq/fastq \
--container containers/rna_quantification.sif
Creation of sample name mapper and masks #
To match and de-identified the samples in both Genotype/phenotype, a index file was created with the following codes
echo -e "fq1\tfq2" > xqtl_protocol_data_sample_list
paste <(ls *.1.fastq) <(ls *.2.fastq) >> xqtl_protocol_data_sample_list
Following codes are ran in python.
import pandas as pd
a = pd.read_csv("xqtl_protocol_data_sample_list","\t")
sample_id = [x.split(".")[0] for x in a.fq1 ]
b = pd.read_csv("filtered_sample_index","\t")
c = pd.read_csv("ROSMAP_assay_rnaSeq_metadata.csv",",")
a["rnaseq_id"] = sample_id
a.merge(b, on = "rnaseq_id")
abc = ab.merge(c, left_on = "rnaseq_id", right_on = "specimenID")
abc.to_csv("../../comprehensive_xqtl_protocol_sample_index.tsv","\t",index = False)
ROSMAP_assay_rnaSeq_metadata.csv
can be downloaded from
ROSMAP metadata wherease filtered_sample_index
is an internal file we used to determined which samples to used. For the purpose of deidentifying this file will not be released to the public.
De-identifing the input phenotype data #
In compliance to HIPAA and the regulation on ROSMAP, we need to de-identify the data before releasing them to publics
readarray -t array1 < <(tail -49 ../../comprehensive_xqtl_protocol_sample_index.tsv | cut -f5)
readarray -t array2 < <(tail -49 ../../comprehensive_xqtl_protocol_sample_index.tsv | cut -f3)
for i in ${!array1[*]} ; do mv ${array1[$i]}.subsetted.1.fastq Sample_${array2[$i]}.subsetted.1.fastq ;done
for i in ${!array1[*]} ; do mv ${array1[$i]}.subsetted.2.fastq Sample_${array2[$i]}.subsetted.2.fastq ;done
for i in ${!array1[*]} ; do mv ${array1[$i]}.subsetted.1.stderr Sample_${array2[$i]}.subsetted.1.stderr ;done
for i in ${!array1[*]} ; do mv ${array1[$i]}.subsetted.1.stdout Sample_${array2[$i]}.subsetted.1.stdout ;done
Generating the input fastq list #
The input of our RNA calling section requirs a list of following format, it was generated manually. We allows 2 optional columns: strand and read_length so that user can specify different stand and read length for each of the samples. However, it is not necessary to include them. Our pipeline can detect the strand based on the output of STAR Alignment. Following codes are ran in python.
import pandas as pd
abc = pd.read_csv("comprehensive_xqtl_protocol_sample_index.tsv","\t",index = False)
abc = abc[["sample_id","fq1","fq2","strand","readLength"]]
abc["fq1"] = [".".join([x] + y.split(".")[1:]) for x,y in zip( abc.sample_id, abc.fq1) ]
abc["fq2"] = [".".join([x] + y.split(".")[1:]) for x,y in zip( abc.sample_id, abc.fq2) ]
abc.colums = ["ID","fq1","fq2","strand","read_length"]
abc.to_csv("xqtl_protocol_data.fastqlist","\t",index = False)
Subsetting and Indexing the genotypes #
Since we only use 49 samples, we extract 49 samples from the genotype data to save memory and time
cd ../
echo -e "old_name\tnew_name" > xqtl_protocol_data_sample_list
paste <(cut -f6 ../comprehensive_xqtl_protocol_data_sample_index.tsv ) <(cut -f1 ../comprehensive_xqtl_protocol_data_sample_index.tsv ) >> xqtl_protocol_data_sample_mask
bcftools view DEJ_11898_B01_GRM_WGS_2017-05-15_21.recalibrated_variants.vcf.gz -S <(cat ../comprehensive_xqtl_protocol_data_sample_index.tsv | cut -f6 | tail -49 ) | \
bcftools reheader --samples xqtl_protocol_data_sample_mask -Oz -o DEJ_11898_B01_GRM_WGS_2017-05-15_21.recalibrated_variants.xqtl_protocol_data.vcf
bcftools view DEJ_11898_B01_GRM_WGS_2017-05-15_22.recalibrated_variants.vcf.gz -S <(cat ../comprehensive_xqtl_protocol_data_sample_index.tsv | cut -f6 | tail -49 ) | \
bcftools reheader --samples xqtl_protocol_data_sample_mask -Oz -o DEJ_11898_B01_GRM_WGS_2017-05-15_22.recalibrated_variants.xqtl_protocol_data.vcf
bgzip DEJ_11898_B01_GRM_WGS_2017-05-15_21.recalibrated_variants.xqtl_protocol_data.vcf
bgzip DEJ_11898_B01_GRM_WGS_2017-05-15_22.recalibrated_variants.xqtl_protocol_data.vcf
tabix DEJ_11898_B01_GRM_WGS_2017-05-15_21.recalibrated_variants.xqtl_protocol_data.vcf.gz
tabix DEJ_11898_B01_GRM_WGS_2017-05-15_22.recalibrated_variants.xqtl_protocol_data.vcf.gz