ROSMAP snRNA-seq pseudo-bulk gene expression QTL #
Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP) snRNA-seq from different cells in Dorsolateral Prefrontal Cortex (DLPFC). Please refer to this document for an overview of the ROSMAP project.
Contact #
Hao Sun (eQTL), Masashi Fujita (eQTL), Haochen Sun (fine-mapping), Jiajun Tao (replication)
Study Overview #
- Sample information:
ROSMAP/ROSMAP_Pseudo_Bulk_sample_attributes.csv
. - Lab protocol:
ROSMAP/ROSMAP_Pseudo_Bulk_lab_protocol.csv
. - Computational protocol:
ROSMAP/ROSMAP_Pseudo_Bulk_computational_protocol.csv
. - QTL summary statistics output:
####/####.qtl_results.csv
. - Fine-mapping results individual level data model:
####/####.susie.csv
. - Fine-mapping results summary statistics model:
####/####.susie_rss.csv
.
Analysis Status #
TransQTL association: Finished.
Dataset Description #
Path(s) to genotype matrix #
Using MatrixQTL
pipeline (by Masashi)
#
- genotype is an all-chromosome, all-samples vcf collection
- The original
gz
vcf isgzipped
but notbgzipped
, thus cannottabix -p
- The vcf is not imputed.
- Dosage file. The number of ALT allele were counted per donor.
/mnt/mfs/ctcn/team/masashi/snuc-eqtl/genotype/get-dosage.ALL.dosage
- SNP position file in GRCh38
/mnt/mfs/ctcn/team/masashi/snuc-eqtl/genotype/get-dosage.ALL.snppos
- VCF file used to generate above files. This is a subset of ROSMAP WGS VCF.
/mnt/mfs/ctcn/team/masashi/snuc-eqtl/genotype/get-dosage.ALL.vcf.gz
- The original VCF files of ROS/MAP WGS is here (N = 1,196; GRCh37):
/mnt/mfs/ctcn/datasets/rosmap/wgs/ampad/variants/snvCombined/
- A summary of quality control is here:
/mnt/mfs/ctcn/datasets/rosmap/wgs/ampad/qualityControl/sampleSheetQc.csv
- Liftover of the above VCFs from GRCh37 to GRCh38.
/mnt/mfs/hgrcgrid/shared/MenonLab/snRNAseq/rosmap_mastervcf/GRCh38_liftedover_sorted_all.vcf.gz
- Sorted positions of SNPs, added rsID in dbSNP154, and renamed chromosomes (e.g. 1 to chr1).
/mnt/mfs/ctcn/resources/snRNAseq/rosmap_mastervcf/GRCh38_liftedover_re-sorted_dbSNP154_chr-renamed_all.bcf
- 424 donors extracted for snRNAseq and applied filtering of MAF, HWE, etc.
/mnt/mfs/ctcn/team/masashi/snuc-eqtl/genotype/get-dosage.ALL.vcf.gz
Path(s) to omics-data matrix #
Path(s) to covariate data matrix #
Using MatrixQTL
pipeline (by Masashi)
#
Here, I use astrocytes as an example. But all other cell types have the same folder structure. Covariates of eQTL analysis are sex, age, PMI, study, total genes detected, top 3 genotype PCs, and up to 30 expression PCs.
- De Jager Lab:
/mnt/mfs/ctcn/team/masashi/snuc-eqtl/v20211109.celltypes/Ast/covariates-20211118.tsv
.
Using TenorQTL
pipeline (by Hao)
#
Path(s) to QTL results #
Using MatrixQTL
pipeline (by Masashi)
#
- De Jager Lab:
/mnt/mfs/ctcn/team/masashi/snuc-eqtl
Take astrocytes as an example, - De Jager Lab:
/mnt/mfs/ctcn/team/masashi/snuc-eqtl/v20211109.celltypes/Ast/matrix-eqtl/covariates-20211118/matrix-eqtl.rds
.
df <- readRDS("matrix-eqtl.rds")$cis$eqtl
Using TenorQTL
pipeline (by Hao)
#
- Wang Lab:
/ftp_fgc_xqtl/projects/single-cell-rna-seq/pseudo_bulk/eight_celltypes_sumstat
- Wang Lab(CU Server):
/mnt/vast/hpc/csg/wanggroup/fungen-xqtl-analysis/analysis/Wang_Columbia/ROSMAP/pseudo_bulk_eqtl