Covariate Data Formatting#
Description#
Our covariate preprocessing steps merge genotypic principal components and fixed covariate files into one file for downstream QTL analysis.
Input#
PCA file as output from the PCA module
Fixed covariate files
Output#
PCA + Covariate file
Minimal Working Example Steps#
The data and singularity used in this minimal working example can be found on Synapse.
i. Merge Covariates and Genotype PCs#
Timing: <1 min
You can edit the total amount of variation you want your PCs to explain by editing the --k
parameter. In this example, we chose 80%.
sos run pipeline/covariate_formatting.ipynb merge_genotype_pc \
--cwd output/covariate \
--pcaFile output/genotype_pca/protocol_example.genotype.chr21_22.pQTL.plink_qc.prune.pca.rds \
--covFile input/protocol_example.samples.tsv \
--tol_cov 0.4 \
--k `awk '$3 < 0.8' output/genotype_pca/protocol_example.genotype.chr21_22.pQTL.plink_qc.prune.pca.scree.txt | tail -1 | cut -f 1 ` \
--container containers/bioinfo.sif
INFO: Running merge_genotype_pc:
INFO: merge_genotype_pc is completed.
INFO: merge_genotype_pc output: /Users/alexmccreight/xqtl-protocol/output/covariate/protocol_example.samples.protocol_example.genotype.chr21_22.pQTL.plink_qc.prune.pca.gz
INFO: Workflow merge_genotype_pc (ID=weaef0ce301340b3d) is executed successfully with 1 completed step.
Troubleshooting#
Step |
Substep |
Problem |
Possible Reason |
Solution |
---|---|---|---|---|
Command Interface#
!sos run covariate_formatting.ipynb -h
usage: sos run covariate_formatting.ipynb
[workflow_name | -t targets] [options] [workflow_options]
workflow_name: Single or combined workflows defined in this script
targets: One or more targets to generate
options: Single-hyphen sos parameters (see "sos run -h" for details)
workflow_options: Double-hyphen workflow-specific parameters
Workflows:
merge_genotype_pc
Global Workflow Options:
--cwd output (as path)
The output directory for generated files.
--covFile VAL (as path, required)
The covariate file
--job-size 1 (as int)
For cluster jobs, number commands to run per job
--walltime 5h
Wall clock time expected
--mem 2G
Memory expected
--numThreads 8 (as int)
Number of threads
--container ''
Software container option
--entrypoint ('micromamba run -a "" -n' + ' ' + re.sub(r'(_apptainer:latest|_docker:latest|\.sif)$', '', container.split('/')[-1])) if container else ""
Sections
merge_genotype_pc:
Workflow Options:
--pcaFile VAL (as path, required)
An RDS file as the output of the genotype PCA module
--k 20 (as int)
The number of PCs to retain, by default is 20, in
practice can be the number of PC that captured more than
70% PVE
--name f'{covFile:bn}.{pcaFile:bn}'
--outliersFile . (as path)
Outliers
--[no-]remove-outliers (default to False)
--tol-cov -1.0 (as float)
Tolerance of missingness in covariates, -1 means do
nothing, otherwise for samples with covariates missing
rate larger than tol_cov will be removed, with missing
rate smaller than tol_cov will be kept.
--[no-]mean-impute (default to True)
Setup and global parameters#
[global]
# The output directory for generated files.
parameter: cwd = path("output")
# The covariate file
parameter: covFile = path
# For cluster jobs, number commands to run per job
parameter: job_size = 1
# Wall clock time expected
parameter: walltime = "5h"
# Memory expected
parameter: mem = "2G"
# Number of threads
parameter: numThreads = 8
# Software container option
parameter: container = ""
import re
parameter: entrypoint= ('micromamba run -a "" -n' + ' ' + re.sub(r'(_apptainer:latest|_docker:latest|\.sif)$', '', container.split('/')[-1])) if container else ""
cwd = path(f"{cwd:a}")
Step 0: Merge Covariates and Genotype PCs#
[merge_genotype_pc]
# An RDS file as the output of the genotype PCA module
parameter: pcaFile = path
# The number of PCs to retain, by default is 20, in practice can be the number of PC that captured more than 70% PVE
parameter: k = 20
parameter: name = f'{covFile:bn}.{pcaFile:bn}'
# Outliers
parameter: outliersFile = path(".")
parameter: remove_outliers = False
# Tolerance of missingness in covariates, -1 means do nothing, otherwise for samples with covariates missing rate larger than tol_cov will be removed,
# with missing rate smaller than tol_cov will be kept.
parameter: tol_cov = -1.0
parameter: mean_impute = True
stop_if(remove_outliers and not outliersFile.is_file(), msg = "No outliers file specified, please add outliers file or remove the remove-outliers flag")
input: pcaFile, covFile
output: f'{cwd:a}/{name}.gz'
task: trunk_workers = 1, walltime = walltime, mem = mem, cores = numThreads, tags = f'{step_name}_{_output[0]:bn}'
R: expand= "$[ ]", stderr = f'{_output:n}.stderr', stdout = f'{_output:n}.stdout', container = container, entrypoint = entrypoint
library("dplyr")
library("readr")
library("data.table")
compute_missing <- function(mtx){
miss <- sum(is.na(mtx))/length(mtx)
return(miss)
}
mean_impute <- function(mtx){
f <- apply(mtx, 2, function(x) mean(x,na.rm = TRUE))
for (i in 1:length(f)) mtx[,i][which(is.na(mtx[,i]))] <- f[i]
return(mtx)
}
filter_mtx <- function(X, missing_rate_thresh) {
rm_col <- which(apply(X, 2, compute_missing) > missing_rate_thresh)
if (length(rm_col)) X <- X[, -rm_col]
return($['mean_impute(X)' if mean_impute else 'X'])
}
pca_output = readRDS("$[_input[0]]")$pc_scores
mtx = pca_output%>%select(contains("PC"))%>%t()
colnames(mtx) <- pca_output$IID
## Keep only the number of PCs specified
mtx = mtx[1:$[k],]
mtx = mtx%>%as_tibble(rownames = "#id")
## Load covariates
covt = transpose(fread("$[_input[1]]", head=T), keep.names="#id", make.names=1) %>% as_tibble()
## Retaining only the overlapped samples with genotype
overlap = intersect(colnames(covt),colnames(mtx))
## Report sample counts:
print(paste(ncol(covt) - 1, "samples are in the covariate file", sep = " "))
print(paste(ncol(mtx), "samples are in the PCA file", sep = " "))
## Report identical samples:
print(paste(length(overlap) - 1, "samples overlap between covariate & PCA files and are included in the analysis:", sep = " "))
print(overlap[!overlap == '#id'])
## Report non-overlapping samples:
cov_missing = covt %>% select(-all_of(overlap))
print(paste(ncol(cov_missing), "samples in the covariate file are missing from the PCA file:", sep = " "))
print(colnames(cov_missing))
pca_missing = mtx %>% select(-all_of(overlap))
print(paste(ncol(pca_missing), "samples in the PCA file are missing from the covariate file:", sep = " "))
print(colnames(pca_missing))
## Removal of outlier if needed
if ($["TRUE" if remove_outliers else "FALSE"]){
outlier = fread("$[outliersFile]", head = FALSE)$V2 %>% as_tibble()
overlap = setdiff(overlap,outlier)
}
covt = covt%>%select(all_of(overlap))
mtx = mtx%>%select(all_of(overlap))
output = bind_rows(covt,mtx)
## Handle missingess in covariates
if($[tol_cov] == -1){if(sum(is.na(output)) > 0 ){ stop("NA in covariates input: Check input file or set parameter tol_cov to allow for removing missing values; mean_impute to allow for imputing missing values")}}
output = output%>%as.data.frame
rownames(output) = output$`#id`
output = filter_mtx(output[,2:ncol(output)],$[tol_cov])%>%as_tibble(rownames = "#id")
output%>%write_delim("$[_output]","\t")
bash: expand= "$[ ]", stderr = f'{_output:n}.stderr', stdout = f'{_output:n}.stdout', container = container, entrypoint = entrypoint
stdout=$[_output:n].stdout
for i in $[_output] ; do
echo "output_info: $i " >> $stdout;
echo "output_size:" `ls -lh $i | cut -f 5 -d " "` >> $stdout;
echo "output_rows:" `zcat $i | wc -l | cut -f 1 -d " "` >> $stdout;
echo "output_column:" `zcat $i | head -1 | wc -w ` >> $stdout;
echo "output_preview:" >> $stdout;
zcat $i | head | cut -f 1,2,3,4,5,6 >> $stdout ; done